Тъй като немалко теми от любимия ми сайт
XNETBG.COM са свързани с Космоса, космическите технологии и изследвания, и науките които го изучават, реших, че ще полезно да се знаят и научните термини, които са свързани с тези теми, за по-ясното им разбиране и употреба. Далеч съм от мисълта, че немалко от учестниците във форума знаят тази терминология, но съм сигурен, че има и такива, които не са ги чували, по простата причина,че професиите и хобитата им нямат нищо общо да речем с ядрената физика, астрофизиката, астрономията, астробиологията и т.н.Аз самият също не знам доста от тази терминология, но „искам да съм в час”, за да мога да общувам по темите, които ми харесват.Така, че моят интерес по тази тема, и изграждането на речника, ще е голям.А и народната мъдрост гласи „Човек се учи докато е жив”. Това е само началото на речника. Надявам се, че този речник ще бъде допълван периодично от колегите-участници във форума и интересуващи се от голямата тема за Космоса.
Доста мислих как да озаглавя тази тема : Речник на галактическите, физическите, астрофизическите и т.н. термини.И накрая реших да избера прилагателното Космическите, защото е най-универсално.Космосът включва в себе си и галактиките, слънчевите системи, мъглявини, звездни купове и всички физични закони-знайни и още неоткрити и т.н.
Засега речникът няма да е по азбучен ред, тъй като ще се изгражда.Но по-важно е съдържанието.
И така, нека да започнем и заедно да изграждаме
речника на Космическите термини.
Астрономия (от гръцки език: αστρο-νομία — „закон на звездите“) е наука, изучаваща небесните тела и явления извън пределите на земната атмосфера като звезди, планети, комети, галактики и реликтовото излъчване.
Небесно тяло се нарича обект от естествен произход, видим в небето. Небесни тела са обекти като звезда, планета, спътник, астероид, пръстен, както и системи, изградени от тях.
Звезда-небесно тяло, представляващо голямо кълбо газ (плазма в хидростатично равновесие), произвеждащо енергия чрез термоядрен синтез, основно превръщане на водород в хелий. Тази енергия се разпространява в пространството под формата на електромагнитно излъчване. Цветът на една звезда се определя главно от нейната температура.Най-горещите звезди имат синкав или синкавобял цвят а най-хладните-червеникавооранжев или червен. В зависимост от температурата на повърхността си повечето звезди са причислени към 7 спектрални класа O,B,A,F,G,K,M. На тези класове съответстват следните температури 50000, 15500, 8500, 6600, 5500, 4100, 2800 К-келвина.
Слънцето е звезда от спектрален клас G, в центъра на нашата Слънчева система.Температурата на повърхността му е 5500 Келвина.Планетата Земя е разположена в орбита около Слънцето, както и множество други планети, астероиди, комети и космически прах. Главната звезда в една планетарна система бива наричана „слънцето“ на системата (или „слънца“ на системата в случай на повече от една звезда). Енергията идваща от слънцето под формата на слънчева светлина подържа почти целия живот на Земята чрез фотосинтезата, освен това то е определящо за състоянието на климата и времето.
Гравитация-естествено явление, при което две тела с дадена маса се привличат едно друго. Тя е едно от четирите фундаментални взаимодействия и се изразява със силата на привличане между телата. Еквивалентният български израз е всеобщо привличане. Макар да е най-слабото от всички взаимодействия, то играе съществена роля при обекти с огромна маса, каквито са планетите например
Светлинна година (символ ly) е единица за дължина, представляваща разстоянието, което светлината изминава за една година във вакуум. Официално под "година" се разбира юлианската година, която се равнява на 365 дни и 6 часа. Използва се в астрономията за измерване на разстояния от порядъка на тези между звездите и галактиките. Светлинна година (ly)Разстоянието, което изминава светлината (със скорост 300 000 км/секунда) за една година. Една светлинна година е еквивалентна на 9.46053x1012 километра[1], 5 880 000 000 000 мили, 9 460 730 472 580,8 км., 63.240 астрономически единици, или 0.3066 парсека. 3.6 светлинни години се равняват на един парсек (пс, ps). Разстоянието от Слънцето до Земята светлината изминава за 8 мин.
Парсек (означение pc) е мерна единица за разстояние, използвана в астрономията. Тя се равнява на разстоянието, от което средният радиус на земната орбита (една астрономическа единица) се вижда под ъгъл от една дъгова секунда, тоест има паралакс от една секунда. От това определение идва и наименованието на единицата ("паралакс от една дъгова секунда"). Парсекът е равен приблизително на 3,26 светлинни години или на 206 265 астрономически единици.
Астрономическа единица (международен символ AU) е единица за дължина, приблизително равна на средното разстояние между Земята и Слънцето. Понякога се означава на кирилица с АЕ. Възприетата през 1976 г. стойност на астрономическата единица в системата на астрономическите константи е:1 AU = 149 597 870 691 ± 30 m или приблизително 150 милиона километра.
Вселена-обикновено означава целия пространствено-времеви континуум, в който съществуваме, заедно с цялата енергия и материя в него. Според астрономите, познатата вселена съдържа поне 7 x 10 на 22 степен звезди.
Атмосфера-общото име за слоя газове, обгръщащ тяло с достатъчно голяма маса. Газовете се привличат от гравитацията на тялото, и се задържат, ако са достатъчно студени и привлича-нето е достатъчно силно. Някои планети се състоят почти изцяло от газове и така имат извънредно дълбока атмосфера.
Газов гигант-представлява голяма на размери и маса планета, по-голямата част от обема на която бива заеман от газове като водород и хелий в течно или газообразно състояние. За газовите гиганти се счита, че имат ядро, състоящо се от силикатни скали и метали. То трябва да е достатъчно голямо, за да може силната му гравитация да позволи първоначалното концентриране на материал. Такива са Юпитер, Сатурн, Уран и Нептун. Ледените гиганти, като Уран и Нептун са подклас на газовите гиганти ; отличават се от газовите с по-ниската си маса и с високото си съдържание на скали и лед.
Планета (от гръцки planeetes — странник, пътешественик)-тяло с маса достатъчна за да приеме кръгла форма под действието на силата на гравитацията, което обикаля около звезда, съставено е от скали,газове, лед, и не произвежда енергия чрез термоядрени реакции. До 1990 г. са известни само девет планети (всичките от нашата Слънчева система). Към 3 ноември 2004 г. са известни вече 133, като всички новооткрити планети са екзопланети (тоест планети, намиращи се извън Слънчевата система). Международният астрономически съюз признава 8 планети в нашата Слънчева система (подредени по нарастващо разстояние от Слънцето):
1. Меркурий
2. Венера
3. Земя
4. Марс
5. Юпитер
6. Сатурн
7. Уран
8. Нептун
През 2006 г. считаният за 9-та планета в Слънчевата система Плутон (♇) и считаният за негов спътник Харон са класифицирани като планети-джуджета. Юпитер е най-голямата, с маса 318 пъти масата на Земята, а Меркурий е най-малък, с маса 0,055 пъти Земната маса.Планетите в Слънчевата система могат да бъдат разделени на две категории според съсатва си : Земеподобни: това са планети близки по състава до Земята; такива са Меркурий, Венера и Марс.Газови гиганти: това са планети, които са съставени предимно от газове и са много по масивни от земеподобните ; такива са Юпитер, Сатурн, Уран и Нептун. Ледените гиганти, като Уран и Нептун са подклас на газовите гиганти; отличават се от газовите с по-ниската си маса и с високото си съдържание на скали и лед.
Слънчевата система се състои от: Слънцето и всички обекти на орбита около него, включително астероиди, комети, планети, спътници, междупланетарен прах и газ. Слънцето, звезда от спектрален клас G2, която съдържа 99,86% от масата на системата.
Астероид-това са малки обекти с твърда повърхност на орбита около Слънцето. Астероидите още се смятат за малки планети или планетоиди, много по-малки от същинските планети. За повечето астероиди се смята че са останки от протопланетарния диск които не са били погълнати от планети или изхвърлени извън Слънчевата система по време на нейното формиране. Някои астероди имат собствени спътници. Почти всички астероиди се намират в астероидния пояс на елиптични орбити между тези на Марс и Юпитер.
Реликтовото излъчване-електромагнитно лъчение, идващо от всички посоки на небесната сфера, със спектър на абсолютно черно тяло с температура ~3 К. Това лъчение ни дава информация за състоянието на младата Вселена, а самото му съществуване се счита за доказателство на теорията за Големия взрив. За пръв път е предсказано от космолога Георги (Джордж) Гамов през 1948 г., по-късно, през 1964 г., Дороцкевич и Новиков доказват, че то трябва да има спектър на абсолютно черно тяло с максимум на излъчването в микровълновия диапазон на електромагнитния спектър. В крайна сметка е открито през 1965 г. от Арно Пензиас и Робърт Уилсън, за което всеки от тях получава 1/4 от Нобеловата награда по физика през 1978.
Големият взрив е космологична научна теория, описваща ранното развитие на Вселената. Разширяването на Вселената, което следва от уравненията на общата теория на относителността, бива потвърдено с наблюденията за раздалечаване на галактиките.Връщайки се назад във времето, стигаме до извода, че Вселената трябва да е била или много малка, или дори да е събрана в точка - т.нар. сингулярност. Теоремата на Хокинг-Пенроуз показва, че от уравненията на общата относителност следва, че такава точка, даваща начало на пространството и времето, трябва да е съществувала. Естествено следствие от това е, че в миналото Вселената е имала по-висока температура и по-висока плътност. Терминът „Големият взрив” се използва както в тесен смисъл за момента, в който започва разширението на Вселената (закон на Хъбъл), така и по-общо за преобладаващата днес космологична концепция, обясняваща произхода и еволюцията на Вселената.
Теоремата на Хокинг-Пенроуз-Роджър Пенроуз е математик и теоретичен физик, роден през 1931 в Колчестър, Есекс, Англия. Работил е както в английски, така и в американски университети. От 1973 г. е професор в Оксфорд. В сферата на математическата физика работи върху различни приложения на Общата теория на относителността. Теоремата на Пенроуз-Хокинг за сингулярностите разкрива основни характеристики на черните дупки.Най-известният му принос в математиката, ,,Мозайката на Пенроуз", слага началото на цяло ново поле за изследване, наречено ,,квазикристали". Научнопопулярната му книга ,,Новият разум на царя", издадена и на български, разглежда увлекателно и задълбочено въпроса дали е възможно създаването на изкуствен интелект.
Закон на Хъбъл (Закон за разбягването на галактиките)-според него разстоянието от нас до дадена галактика е правопропорционално на скоростта, с която тя се отдалечава от нас.Той е формулиран през 1929 г. от Едуин Хъбъл, който е наблюдавал червеното отместване в спектрите на галактиките. Според него това червено отместване се дължи на Доплеровия ефект и оттам той прави извода, че галактиките се отдалечават. На негово име е кръстен и най-големият за сега земен телескоп в космоса-Хъбъл.
Доплеров ефект-промяната на приеманата от наблюдателя честота или дължина на вълната, когато източникът и/или наблюдателят (приемникът) се движат по направление един към друг. Честотата се увеличава, когато източникът и наблюдателят се доближават, и намалява, когато се отдалечават.
Червено отместване-отместването на спектралните линии на химичните елементи към червения край на спектъра, т.е. увеличаване на дължината на вълната. Причините за това могат да бъдат няколко : 1.Гравитация, източникът на сигнала изпраща сигнала в посока обратна на гравитационното поле, например източникът е на пода, а приемникът на 2 метра височина. 2.Доплеров ефект, източникът на сигнала се отдалечава от приемника. В нерелативисткия случай (малки скорости), относителното изменение на честотата е v/c, където v е скоростта с която се отдалечава източникът. 3.Разширяването на Вселената, източникът на сигнала е на голямо разстояние от нас, за времето на разпространение на лъчението Вселената се е разширила многократно и това е "разтегнало" вълната.
Черна дупка-струпване на огромна маса в малък обем с толкова силно гравитационно поле, че втора космическа скорост е по-голяма от тази на светлината. Поради това дори и светлината не е в състояние да преодолее тази скорост, оттам и името „черна“ дупка.
Телескоп (други имена: далекоглед, остар. пусула (от итал. bossolа -компас), е уред за наблюдаване на астрономически обекти. Обикновено под телескоп се разбира оптичен телескоп, но съществуват и телескопи за по-голямата част от спектъра на електромагнитно излъчване, както и за други видове сигнали.Оптичните телескопи са уреди, които фокусират светлината, като увеличават видимия ъглов размер и видимата яркост на отдалечени обекти. За тази цел те използват един или повече оптични елементи (лещи и/или огледала). Те събират светлината във фокус, където изображението може да бъде наблюдавано, фотографирано или изучавано.
Магнитното поле на Земята-една от двете компоненти на електромагнитното поле, която се появява при наличието на променящо се във времето електрическо поле. Освен това магнитно поле може да се създаде от електрически ток или от магнитния момент на електроните в атомите на постоянен магнит. Основна характеристика на магнитното поле е неговата сила, определяна от вектора на магнитната индукция. В SI магнитното поле се измерва в тесла (означение Т). Магнитното поле се формира от изменящо се с времето електрическо поле, от собствените магнитни моменти на частиците (при постоянните магнити) или от електрически ток. В някои прости случаи полето може да се определи по закона на Био-Савар или от теоремата за циркулацията (наричана също закон на Ампер). В по-сложни случаи се търси като решение на уравненията на Максуел. Магнитното поле се проявява чрез въздействието му върху магнитните моменти на частиците и телата, върху движещи се електрически заредени частици (проводник, по който тече електрически ток). Силата, действаща върху движеща се в магнитно поле заредена частица, се нарича сила на Лоренц. Тя е пропорционална на заряда на частицата и на векторното произведение на полето и скоростта на движение на частицата.
Законът на Ампер (открит от Андре Мари Ампер) показва зависимостта на интегралното магнитно поле около затворен контур, създавано от електрическия ток, преминаващ през контура. Законът е магнитен аналог на закона на Гаус и е едно от четирите уравнения на Максуел, образуващи основата на класическия електромагнетизъм.
Уравненията на Максуел или уравнения на Максуел-Херц-система от четири уравнения, обобщени от Джеймс Кларк Максуел, които описват поведението на електрическото, магнитното и електромагнитно полета, както и взаимодействието на последните с веществени среди. Четирите уравнения на Максуел показват : 1)взаимната зависимост на електрическото и магнитно полета ; 2) съществуването на електромагнитни вълни ; 3) крайната скорост на разпространение на електромагнитните вълни ; 4)разпространението на електромагнитното поле със скоростта на светлината, както и природата на светлината като електромагнитна вълна.
Сила на Лоренц-силата действаща върху заредена частица, причинена от електрическото, магнитното или електромагнитно полета на средата, в която тя се намира. Лоренцовата сила се изразява с уравнението на Лоренц-Кулон (понякога наричано само уравнение на Лоренц) :
Електрично поле (или електрическо поле)-една от компонентите на електромагнитното поле, съществуваща в пространството около заредени частици. Електричното поле може да се появи и като резултат от действието на променливо магнитно поле. В областта от пространството, отдалечена на достатъчно голямо разстояние от заредената частица или частици, създаващи полето, електричното поле има структура на плоска вълна. То не може да се наблюдава непосредствено, а само чрез някакви прибори или пробен заряд. Основното действие на електричното поле е да придава ускорение на тела или частици, притежаващи електричен заряд.
Меркурий е най-близката до Слънцето и най-малката планета в Слънчевата система. Видимата величина на планетата варира между −0,4 и 5,5; Меркурий се наблюдава винаги в непосредствена близост до Слънцето и поради това рядко бива наблюдаван с телескопи (най-голямата му елонгация е 28,3°). Меркурий няма естествени спътници. Единият от двата космически апарата, посетили планетата, е Маринър 10 (1974–75 г.), който успява да заснеме само около 40–45% от повърхността на планетата. Другият апарат е МЕСИНДЖЪР, който успява да картографира други 30% от повърхността на Меркурий по време на полета си около планетата на 14 януари 2008 година. Космическият апарат ще направи още две прелитания около планетата, за да картографира цялата повърхност.Физическите характеристики на планетата са подобни на тези на Луната. По повърхността на Меркурий има множество кратери, и също няма никакви естествени спътници и почти никаква атмосфера. Има голямо планетно ядро от желязо, което създава магнитно поле със сила около 1% от тази на магнитното поле на Земята. На него се дължи и високата средна плътност на планетата. Температурата на повърхността варира от −180 до 430°C.
Венера е втората по ред планета от Слънцето и носи името на богинята Венера от римската митология. Тя е земеподобна планета, много близка по големина и общи качества до Земята; понякога е наричана „планетата-сестра на Земята“. От всички планети в Слънчевата система Венера има най-малък орбитален ексцентрицитет равен на 0,7% (нейната орбита е почти идеално кръгла). Венера е била известна на древните вавилонци (около 1600 г. пр.н.е.) и вероятно е била позната и в праисторически времена поради високата си яркост. Неин символ е стилизираният образ на огледалото на богинята Венера: окръжност с малък кръст отдолу (♀).Средната температура на Венера, по данни на НАСА, е 464 °Венера има бавно ретроградно въртене (обратно на часовниковата стелка), което означава, че тя се върти от изток на запад вместо от запад на изток както повечето други основни планети (Плутон и Уран също имат ретроградно въртене, въпреки че оста н